# THE IMPACT OF PREOPERATIVE ANEMIA ON LONG TERM SURVIVAL, AMPUTATION-FREE SURVIVAL, LIMB SALVAGE IN PATIENTS WITH CHRONIC LIMB THREATENTING ISCHEMIA

Rose Gooding, Mariel Rivero, Brittany Montross, Sikander Khan, Linda Harris, Maciej Dryjski, Hasan H Dosluoglu

# Introduction

- CLTI- 60% preoperative anemia
- Anemia associated with MAE: MI, renal failure, stroke and all cause mortality, and worse 1-year AFS/limb salvage
- Transfusions
  - Associated with reduced AFS independent of anemia severity related to immunomodulatory effects
  - Associated with wound infection, graft thrombosis, pulmonary complications, MI, and 30d mortality

# Aim

• Assess impact of anemia on early and long-term survival, amputation free survival (AFS), limb salvage (LS), and patency rates in patients who undergo revascularization for CLTI

# Methods

- CLTI revascularization 1/2007-12/2021
- Preoperative (Hct  $\geq$ 39, Group I, N=275 (335 limbs)) compared to those with mild anemia (Hct 33.0-38.9, Group II, 266 (338 limbs)) and moderate/severe anemia (Hct <33.0, Group III, N=199 (266 limbs)).

• WHO classification for anemia.

### **Revascularization Procedures**

• Endovascular first approach

## **Results**

- 740 patients underwent revascularization (775 limbs)
  - 275 (335 limbs) Group I (Hct ≥39)
  - 266 (338 limbs) Group II (Hct 33.0-38.9)
  - 199 (266 limbs) Group III (Hct <33.0)
- Group I
  - Younger compared to Group II and Group III
  - Less DM, non-ambulatory status, and more active smokers
  - Less likely tissue loss, undergo endovascular interventions
  - Infra-popliteal intervention
  - More likely to have TASC C/D disease.

| Table I          | – Demogr | aphic char | acteristics of | groups  |
|------------------|----------|------------|----------------|---------|
|                  | Group I  | Group II   | Group III      | Р       |
|                  | N=275    | N=266      | N=199          |         |
| Age              | 70.4±9.9 | 73.1±9.7   | 72.9±10.9      | < 0.005 |
| CAD              | 51.6%    | 54.9%      | 59.8%          | 0.211   |
| HTN              | 73.8%    | 82.7%      | 84.4%          | 0.006   |
| DM               | 49.8%    | 66.9%      | 68.8%          | < 0.001 |
| CVD              | 13.8%    | 18.4%      | 14.1%          | 0.268   |
| HLD              | 81.5%    | 77.4%      | 79.4%          | 0.513   |
| COPD             | 27.2%    | 19.2%      | 20.1%          | 0.051   |
| CKD              | 21.4%    | 41.7%      | 52.3%          | < 0.001 |
| ESRD             | 2.9%     | 10.9%      | 16.6%          | < 0.001 |
| Active<br>smoker | 46.5%    | 23.3%      | 24.6%          | < 0.001 |
| Beta-blocker     | 51.8%    | 60.8%      | 62.3%          | 0.036   |
| Statins          | 67.5%    | 64.2%      | 65.3%          | 0.706   |
| ACEI             | 52.2%    | 49.8%      | 48.7%          | 0.739   |
| ECASA            | 95.2%    | 91.3%      | 95.4%          | 0.088   |
| Clopidogrel      | 77.7%    | 75.6%      | 76.9%          | 0.905   |
| Warfarin         | 13.8%    | 18.2%      | 12.7%          | 0.190   |
| Non-amb          | 8.0%     | 21.1%      | 16.1%          | < 0.001 |
|                  |          |            |                |         |

| Table 1              | I – Clinical | presentati | on and inter | ventions |
|----------------------|--------------|------------|--------------|----------|
|                      | Group I      | Group II   | Group III    | Р        |
| Rest pain            | 31.1%        | 14.8%      | 7.9%         |          |
| Tissue loss          | 69.9%        | 85.2%      | 92.1%        | < 0.001  |
| Prior ispi<br>revasc | 16.1%        | 21.1%      | 16.1%        | 0.399    |
| TASC A/B             | 16.7%        | 22.9%      | 24.9%        |          |
| TASC C/D             | 83.8%        | 77.1%      | 75.1%        | 0.034    |
| Open                 | 30.4%        | 21.6%      | 16.2%        |          |
| Endo                 | 60.6%        | 78.4%      | 83.8%        | < 0.001  |
| Aortoiliac           | 10.7%        | 8.3%       | 6.4%         |          |
| Fem-pop              | 43.0%        | 36.1%      | 32.1%        |          |
| Infra-pop            | 46.2%        | 55.6%      | 61.5%        | 0.005    |
| Multilevel           | 61.5%        | 49.1%      | 47.0%        | 0.721    |
| Preop ABI            | 0.42±0.27*   | 0.45±0.26  | 0.48±0.26*   | 0.198*   |
| Postop ABI           | 0.89±0.17    | 0.89±0.17  | 0.92±0.13    | NS       |

### **Perioperative Mortality**

• 30-day mortality significantly less in Group I compared to Groups II and III (1.5% vs. 5.6% vs. 4.9%, P=0.015)

• In open revascularization

• 30-day mortalities 0% Group I,; 6.1% (P=0.035) Group II, 6.7% (P=0.028) Group III

• In endovascular revascularization

• 30-day mortality rates similar between groups (2.1% vs. 5.5% vs. 3.9%, P=0.188)

• Mean follow-up 42.5±38.5months (range 0-188months)

#### Survival

- The overall survival was significantly different in all groups with 5-year survival 52±3% in Group I, 30±3% in Group II and 22±3 in Group III (P<0.001, Figure 1).
- AFS was also significantly different between groups (Figure 2) with 5-year AFS 47±3% in Group I, 25±3% in Group II and 16±3% in Group III (P<0.001, Figure 2).
- In multivariate analysis, CAD, CKD, non-ambulatory status, tissue loss and Hct<39.0 were found to be independently associated with overall survival and AFS (Table III).

### Limb Outcomes

• LS Endovascular interventions

• Significantly different (5-year, 90±2% in Group I, 83±3% in Group II and 75±4% in Group III, P=0.002)

• LS Open revascularization

• No difference (5-year, 86±4% in Group I, 89±4% in Group II and 82±6% in Group III, P=0.737)

• MALE-free survival similar in endovascular (P=0.842)/ open (P=0.788)

• Freedom from MALE and postoperative mortality similar in evtreated patients (P=0.529) and open-treated patients (P=0.612).

#### **Patency Rates**

• Primary and secondary patency rates similar between groups both in endovascular and open treated patients (P=0.973 for PP, and P=0.124 for SP.

- Increasing severity of anemia associated with lower one-year AFS and LS.
- Further research into blood management initiatives is required to examined how best to correct anemia and improve patient outcomes

2017;24(6):551-557.



| Table III – Multivariate analysis |                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Survival                          |                                                                                                                        | AFS                                                       |                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 1.5 (1.3-1.8)                     | P<0.001                                                                                                                | 1.4 (1.1-1.6)                                             | P<0.001                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1.5 (1.3-1.8)                     | P<0.001                                                                                                                | 1.5 (1.2-1.8)                                             | P<0.001                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1.6 (1.3-2.0)                     | P<0.001                                                                                                                | 1.7 (1.3-2.1)                                             | P<0.001                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1.5 (1.2-1.9)                     | P=0.001                                                                                                                | 1.5 (1.2-2.0)                                             | P=0.001                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1.4 (1.1-1.7)                     | P=0.002                                                                                                                | 1.4 (1.2-1.8)                                             | P<0.001                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1.7 (1.4-2.1)                     | P<0.001                                                                                                                | 1.8 (1.4-2.2)                                             | P<0.001                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                   | Table III – N   Surviv   1.5 (1.3-1.8)   1.5 (1.3-1.8)   1.6 (1.3-2.0)   1.5 (1.2-1.9)   1.4 (1.1-1.7)   1.7 (1.4-2.1) | Table III – Multivaria   Survival   1.5 (1.3-1.8) P<0.001 | Table III – Multivariate analysisSurvivalAF $1.5 (1.3-1.8)$ $P<0.001$ $1.4 (1.1-1.6)$ $1.5 (1.3-1.8)$ $P<0.001$ $1.5 (1.2-1.8)$ $1.6 (1.3-2.0)$ $P<0.001$ $1.7 (1.3-2.1)$ $1.5 (1.2-1.9)$ $P=0.001$ $1.5 (1.2-2.0)$ $1.4 (1.1-1.7)$ $P=0.002$ $1.4 (1.2-1.8)$ $1.7 (1.4-2.1)$ $P<0.001$ $1.8 (1.4-2.2)$ |  |  |  |  |  |

# Conclusion

Preoperative anemia affected a statistically significant

- proportion of patients with PAD who had open and
- endovascular revascularization.

### References

- 1. Esteban C, et al. Anemia en pacientes sometidos a cirugía vascular, factor predictor de amputación y muerte. Med Clin (BArc). 2019;152(1):6-12.
- 2.Kougias P, et al. Effect of postoperative anemia and baseline cardiac risk on serious adverse outcomes after major vascular interventions. J Vasc Surg. 2017;66:1836-43. **3**.Birmpili P, et al. The Impact of Pre-Operative Anaemia on One Year Amputation Free Survival and
- Re-Admissions on Patients Undergoing Vascular Surgery for Peripheral Artery Disease: A National Vascular Registry Study. Eur J Endovasc Surg. 2023;66:204-212. 4.Schanzer A, et al. Risk stratification in critical limb ischemia: Derivation and validation of a model to
- predict amputation-free survival using multicenter surgical outcomes data. J Vasc Surg. 2008; 48:1461-
- 5. Youssef L, et al. Transfusion-related immunomodulation: A reappraisal. Curr Opin Hematol.
- 6.Johnson C, et al. Impact of Perioperative Blood Transfusion in Anemic Patients Undergoing Infra Inguinal Bypass. Ann Vasc Surg. 2022;79: 72-80.