

Long-Term Patency Between Brachiocephalic And Brachiobasilic Fistulas: A Single Institution Review

Rohini J. Patel, MD, MPH; Sina Zarrintan MD, MS, MPH, Claire Janssen MD, Sabrina Straus BS, Mahmoud B. Malas, MD, MHS; Omar Al-Nouri DO Division of Vascular Surgery, University of California San Diego School of Medicine, San Diego, CA, USA

Background

- When forearm vessels are not suitable for AVF creation or when previous access attempts have failed, the options for vascular access move to the upper arm
- The basilic vein is a deeper vein, protected from venipuncture damage, and has a wide diameter which contributes to fistula maturation. However, the basilic vein must be mobilized and superficialized during fistula formation
- Cephalic vein is superficial making the surgical technique simpler but also increasing the risk of previous venipuncture damage.
- There is no consensus in the literature on which AV access produces better outcomes

Methods

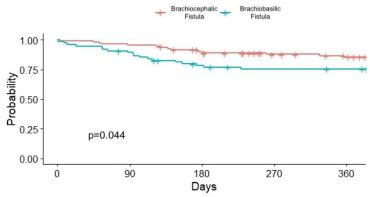
- Retrospective review
- 2019-2022
- Single institution
- Patients were split by procedure: BCF and BBF
- Primary outcomes
 - Primary patency (PP)
 - Primary assisted patency (PAP)
 - Secondary patency (SP)
- Secondary outcomes
 - 30-day complications
 - Access abandonment
 - Interventions
 - Mortality

Primary Patency Failure Strata Brachiocephalic Fistula 1.00 0.75 0.25 0.00 p=0.464 0.00 Days

Regression

	Coefficient*	95% CI	P Value	Adjusted R- Squared
Operative Time (minutes)	44.2	35.0,53.5	<0.0001	0.371
IVF (cc)	103.0	40.8,165.2	0.001	0.128
Estimated Blood Loss (cc)	23.0	13.1,32.9	<0.0001	0.268

Adjusted for age, sex, body mass index, smoking status, preoperative vein size, history of surgical access, procedure type (BCF vs BBF), and anesthesia type


Each model compares individuals who underwent a brachiocephalic fistula (BCF) compared to brachiobasilic fistula (BBF)

*Increase in covariate in RBF

Secondary Outcomes

Variable	Brachiobasilic Fistula N=75 (40.8)	Brachiocephalic fistula N=109 (59.2)	P-Value		
30-Day Outcomes					
Hematoma			0.155		
Non-Operative	4 (5.3)	2 (1.8)			
Management					
Operative Management	0	3 (2.8)			
Pseudoaneurysm	1 (1.3)	0	0.227		
Embolus	0	0	n/a		
Stroke	0	0	n/a		
Myocardial Infarction	0	0	n/a		
Infection	1 (1.3)	0	0. 227		
Deep Venous Thrombosis	0	1 (0.9)	0.406		
30-Day Death	0	0	n/a		
Long-Term Outcomes					
Access Abandonment	25 (33.3)	28 (25.7)	0.261		
Steal Syndrome	3 (4.0)	6 (5.5)	0.642		
Time to Cannulation	136.4 ± 143.3	176.6 ± 168.8	0.109		
Total # Interventions	1.1 ± 1.7	1.1 ± 1.8	0.868		
Death	14 (18 7)	6 (5 5)	0.005		

Primary Assisted Patency Failure

Conclusion

- No difference was seen between BBF and BCF in terms of primary patency or secondary patency
- Even with larger vein size, BBF did not confer a benefit in long term patency or access abandonment
- BBF did not confer decreased procedures to maintain patency and BBF had greater operative length and blood loss, as well as mortality
- We believe this study demonstrates that for patients who must use an upper extremity location, using the cephalic vein is preferred as it does not negatively impact long-term patency