

Impact of Peripheral Vascular Disease on Gait Function in Patients with Below Knee Amputation

Luke J Llaurado, BA¹; Wynne Zheng MA¹; Jie Jung Shih, MS¹; Rachel N Rohrich, BS²; Cameron M Akbari, MD²; Jayson N Atves, DPM²; Karen K Evans, MD²; John S Steinberg DPM²; Richard C Youn, MD²; Chris E Attinger, MD²

1.Georgetown University School of Medicine, Washington, DC

2.Medstar Georgetown University Hospital, Department of Plastic and Reconstructive Surgery, Washington, DC

INTRODUCTION

- Peripheral vascular disease (PVD) is commonly associated with peripheral neuropathy, both of which are exacerbated by comorbidities such as diabetes, congestive heart failure, and end-stage renal disease.
- PVD increases the risk of lower extremity amputation, particularly below-knee amputation (BKA), significantly impacting patients' mobility and leading to functional challenges
- This study quantifies the combined effects of PVD and BKA on patients' gait and mobility, which remain largely unexplored.

METHODS

- A single-center study was conducted from June 2021 to July 2024.
- Adult patients who could safely ambulate unassisted without pain and had no open wounds or lower extremity surgery in the past three months were included.
- PVD status and BKA history were documented through retrospective chart review.
- Participants completed a 120s walk test and a 30s Romberg sway test using wearable sensors.
- Gait data were collected through Motility Lab software, analyzing 7 parameters found in Table 1
- Root-mean-square (RMS) sway (m/s²) was extrapolated to assess postural stability and sway area.

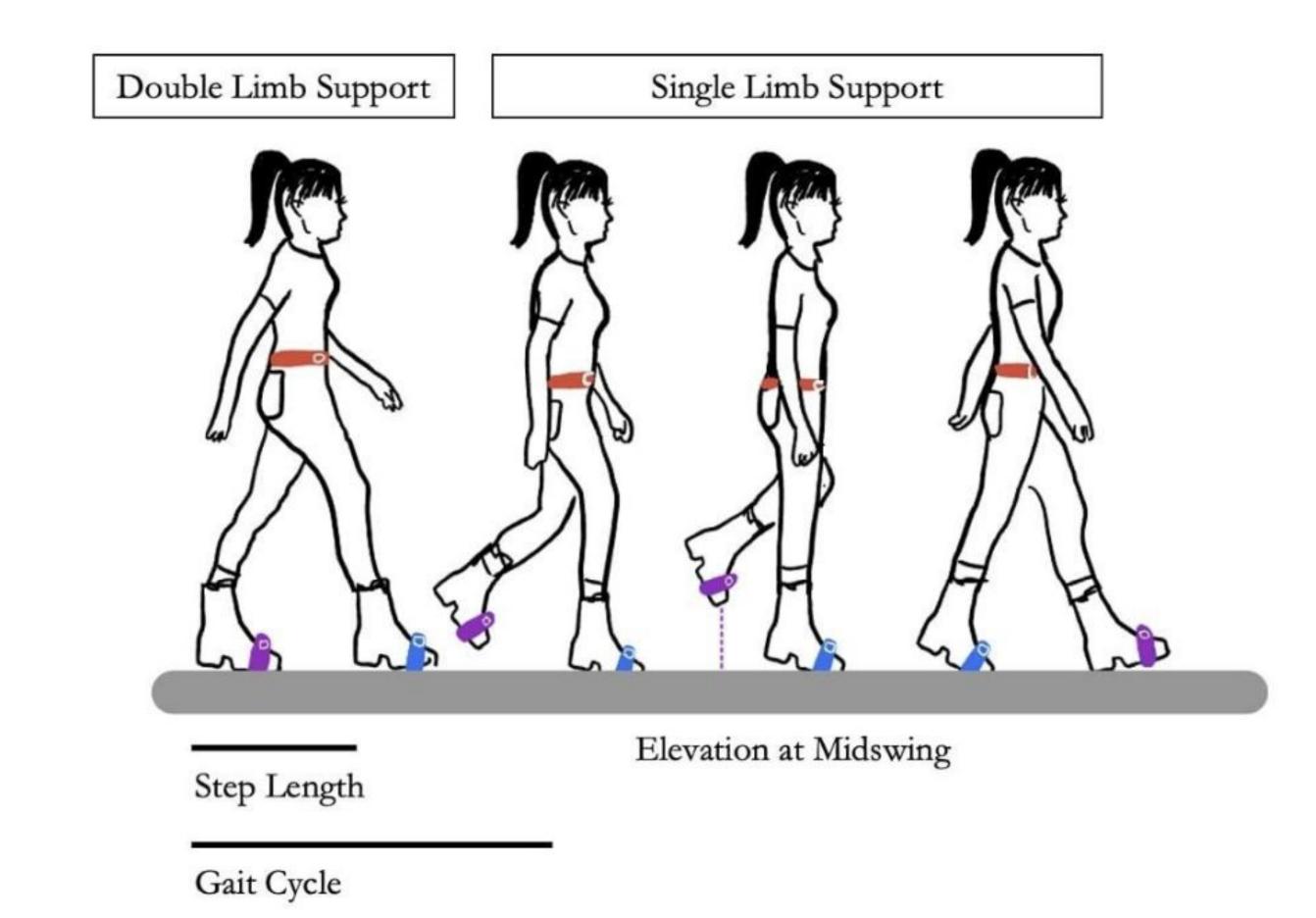


Figure 1. Gait cycle variables and definitions evaluated in this study

RESULTS

Table 1. Average gait parameters between limbs for patients with and without PVD **PVD** No PVD P-Value Overall 0.009 Gait Speed, m/s 0.72 ± 0.26 0.89 ± 0.08 0.58 ± 0.28 Elevation Mid-Swing, cm 1.46 ± 0.56 1.46 ± 0.57 1.46 ± 0.58 0.998 0.067 Step Duration, s 0.66 ± 0.09 0.62 ± 0.06 0.70 ± 0.10 Cadence, steps/min 98.54 ± 8.95 88.67 ± 14.37 0.110 93.06 ± 12.95 Single Limb Support, % 0.005 33.56 ± 3.40 31.68 ± 3.37 35.91 ± 1.50 0.005 Double Limb Support, % 28.13 ± 2.99 36.71 ± 6.99 32.89 ± 6.98 0.008 Stride Length, m 0.71 ± 0.11 0.77 ± 0.11 0.85 ± 0.08 0.16[0.05]RMS Sway, m/s2 0.15 [0.26] 0.13 [0.31] 0.929 35.50 [12.25] 39.50 [2.50] **LEFS** 37.50 [8.75] 0.856

- Patient characteristics such as age, BMI, and CCI
 were comparable between groups
- Significant differences were observed between
 Non-PVD (n=14) and PVD (n=12) groups in:
 - Gait speed $(0.88 \pm 0.14 \text{ vs } 0.61 \pm 0.27, p=0.003)$
 - \circ Step duration (0.62 ± 0.07 vs 0.69 ± 0.09, p=0.039)
- Single limb support (36.12 ± 1.78 vs 32.70 ± 3.93,
 p=0.007)
- Double limb support (35.99 [2.62] vs 33.03 [3.63],
 p=0.020)
- \circ Stride length (0.84 ± 0.08 vs 0.73 ± 0.10, p=0.006)

CONCLUSION

BKA patients with PVD may experience more pronounced ambulatory dysfunction than their counterparts without PVD.

 A vasculo-plastic approach that incorporates a team of both plastic and vascular surgery should be used to manage and surveille this complex patient population.