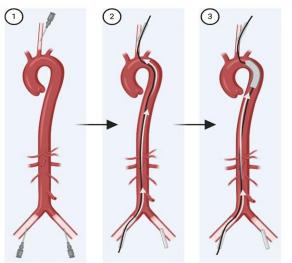

Cadaveric Training Model for the Endovascular Management of Type-B Aortic Dissection

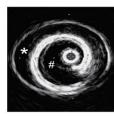
Peter Osztrogonacz, MD [1.2]. Dylan Brook, MD [1], Bahar Alasti [3], Paul Haddad, MD [1], Rebecca Barnes, MT [1], Stuart J Corr, PhD [1,4,5], Alan B, Lumsden, MD [1], Daanish Sheikh [6], Robert Burns [5], Maham Rahimi, MD, PhD [1] [1] Dept. of Cardiovascular Surg., Houston Methodist Hospital [2] Dept. of Vasc. Surg., Semmelweis University [3] McMaster University [4] Rice University, Dept. of Bioengineering [5] UT Health San Antonio [6] UT Austin CNS



INTRODUCTION

- Aortic dissection is the most common condition in Acute Aortic Syndrome
- Type-B Aortic Dissection (TBAD) endovascular repair is both challenging to treat and challenging to teach
- Currently, there is no well-established training model for Thoracic Endovascular Aortic Repair (TEVAR) of TBAD
- Our cadaveric TBAD model can help improve TEVAR training

(Above) Figure 1: (A) Adjusted DG position in cadaveric model (B) Gore CTAG stent graft



RESULTS

(Left) **Figure 2:** Dacron Graft Positioning using femoral and carotid access and alidewire loops.

IVUS Image depicts the simulated false (*) and true lumens (3) once DG is in place.

FEASIBILITY TEST

1. ACCESS INTERIOR of TUBE

2. FORM PROXIMAL LOOP

3. FORM DISTAL LOOP

4. POSITION DACRON GRAFT

5. VISALUZE DG within AORTA

REPLICATE in CADAVERIC MODEL

METHODS

- ☐ Feasibility Test was initiated with a plastic tube designed to simulate the aorta
- To Access the Interior of the Tube, a 26 French (Fr) and
 5 Fr sheath were inserted at each end of the plastic tube
- Soft glidewire was used to a create a Proximal Loop around the proximal segment of a Dacron Graft (DG)
- Another segment of glidewire was used to create a **Distal Loop** at the distal end of DG
- DG was fed through 26 Fr sheath by <u>traction</u> on distal end of <u>proximal loop</u>, which extended outward from the 5 Fr sheath.
- IntraVascular UltraSound (IVUS) catheter was used to visualize DG within aorta (Figure 1B)
- This methodology was then replicated in a cadaveric model

DISCUSSION

- CADAVERIC TBAD MODEL ADVANTAGES:
- Lifelike experience with IVUS-guided feedback
- Planning using Cone-Beam Computed Tomography
- Intra-operative decision-making based on IVUS
- ☐ CADAVERIC TBAD MODEL **DISADVANTAGES**:
- Cost and availability of cadavers
- Infrastructure needed to create model and perform TEVAR simulation

CONCLUSION

- ☐ Existing aortic dissection models have limitations:
 - Animal models are time consuming with high failure rates
 - Vascular phantoms lack feedback on endovascular devices and don't facilitate real-life procedural steps
- The model we developed showed that creating a training model for Type-B Aortic Dissection (TBAD) is feasible and that a cadaveric TBAD can be reproduced
- This innovative educational tool is promising in terms of being able to effectively instruct trainees in the management of TBAD.